Journal of Organometallic Chemistry, 72 (1974) 351-359 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESE UND EIGENSCHAFTEN VON BIS(DIALKYLAMINO)-PERFLUORMETHYLPHOSPHINEN UND -ARSINEN

351

O. ADLER und F. KOBER Fachbereich 8 der T.H. Darmstadt (Deutschland) (Eingegangen den 27. Dezember 1973)

Summary

The reactions of the perfluoromethyl compounds $CF_3 PI_2$ and $CF_3 AsI_2$ with secondary amines HNR_2 yield the bis(dialkylamino)perfluoromethylphosphines and -arsines $CF_3 P(NR_2)_2$ and $CF_3 As(NR_2)_2$. The IR and NMR spectra are reported and discussed. The cleavage of the P—N or As—N bond with acid molecules is described.

Zusammenfassung

Die Umsetzung der Perfluoralkylverbindungen CF_3PJ_2 und CF_3AsJ_2 mit sekundären Aminen HNR₂ liefert die Bis(dialkylamino)-perfluormethylphosphine und -arsine $CF_3P(NR_2)_2$ und $CF_3As(NR_2)_2$. Die IR- und NMR-Spektren der Verbindungen werden mitgeteilt und diskutiert. Die Spaltung der E-N-Bindung mit aciden Molekülen wird beschrieben.

Einleitung

Durch Umsetzung von Methylarsindijodid $CH_3 AsJ_2$ mit sekundären Aminen HNR₂ gelang die Darstellung der Bis(dialkylamino)methylarsine $CH_3 As(NR_2)_2$ mit dem typischen Strukturelement $\rightarrow N-As-N \rightarrow [1]$. Kaum beschrieben sind die analogen Bis(dialkylamino)-perfluormethylarsine bzw. Phosphine $CF_3 E(NR_2)_2$ mit E = P, As. Die einfachsten Vertreter, die Methylderivate $CF_3 E[N(CH_3)_2]_2$ wurden durch Umsetzung der Tris(dimethylamino)-Verbindungen $E[N(CH_3)_2]_3$ mit CF_3J nach Gl. 1 erhalten [2, 3].

 $2E[N(CH_3)_2]_3 + CF_3J \rightarrow CF_3E[N(CH_3)_2]_2 + [E\{N(CH_3)_2\}_4]J$ (1)

Durch Spaltung der N–P-Bindung im Dimethylaminodimethylphosphin (CH₃)₂ - N–P(CH₃)₂ mit dem cyclischen Phosphin (CF₃P)₄ gelang die Darstellung des Bis(dimethylamino)-trifluomethylphosphins CF₃P[N(CH₃)₂]₂ neben Bis-(dimethylphosphino)-trifluormethylphosphin CF₃P[P(CH₃)₂]₂ [4].

352

Die Umsetzung von $CF_3 PCl_2$ mit $HN(CH_3)_2$ bzw. $HN(C_2 H_5)_2$ liefert je nach Stöchiometrie der Reaktanden die Phosphine $CF_3 PClN(CH_3)_2$, $CF_3P [N(CH_3)_2]_2$ und $CF_3 PClN(C_2 H_5)_2$ [5, 6, 7].

Vertreter mit höheren Resten R sind bis jetzt nicht untersucht. Wegen der relativ geringen Zahl von $CF_3 E(NR_2)_2$ -Derivaten sind auch die Eigenschaften der As-N- bzw. P-N-Bindung, speziell der Einfluss von $(p \rightarrow d)\pi$ -Wechselwirkungen kaum erforscht. Ziel der vorliegenden Arbeit war deshalb: (a) Ein Verfahren zur Darstellung von $CF_3 E(NR_2)_2$ -Verbindungen mit E = P, As und beliebigen Resten R auszuarbeiten. (b) Die spektroskopischen Eigenschaften dieser Verbindungen und die Reaktivität der E-N-Bindung zu untersuchen und mit den analogen Alkylderivaten zu vergleichen.

Ergebnisse und Diskussion

Zur Synthese der $CF_3 E(NR_2)_2$ -Verbindungen bot sich eine Dismutation nach Gl. 2 an:

$$2E[N(CH_3)_2]_3 + E(CF_3)_3 \rightarrow 3CF_3E[N(CH_3)_2]_2$$
(2)

Dieses zur Darstellung von Phosphinen und Arsinen des Typs. EX_2 Y bewährte Reaktionsprinzip des Austausches zwischen EX_3 und EY_3 [8-19] erweist sich hier als ungeeignet. Das erwartete $CF_3 E[N(CH_3)_2]_2$ entsteht trotz Variation der Reaktionsbedingungen zusammen mit $(CF_3)_2 E-N(CH_3)_2$ nur in äusserst geringer Ausbeute; ausserdem erweist sich die Trennung von den nichtumgesetzten Ausgangsverbindungen als schwierig. Die Untersuchungen wurden deshalb nicht weiter verfolgt.

Dagegen liefert die Umsetzung der Trifluormethylelementdijodide $CF_3 EJ_2$ mit den Aminen HNR₂ in Äther die erwarteten Verbindungen $CF_3 E(NR_2)_2$ in guter Ausbeute. Die Reaktion wird durch Gl. 3 beschrieben:

 $CF_3EJ_2 + 4HNR_2 \rightarrow CF_3E(NR_2)_2 + 2[NH_2R_2]J$

Die hohe Reaktivität der Komponenten ermöglicht eine Umsetzung bei –40°C; der Reaktionsverlauf kann an der Entfärbung der durch das Dijodid gelb-gefärbten Lösung und an ausfallendem Ammoniumsalz verfolgt werden. Ähnlich wie bei den (CF₃)₂ E–NR₂-Verbindungen [20-21] beeinflusst der Rest R des Amins den Reaktionsverlauf kaum. Die Produkte werden durch Filtration und Destillation gereinigt. In Tabelle 1 sind die dargestellten Verbindungen zusammengefasst.

(3)

Die Aufklärung der Molekülstruktur erfolgte durch Elementaranalyse sowie durch Auswertung der ¹ H- und ¹⁹ F-NMR- und IR-Spektren.

Elementaranalysen. Der C,H,N-Gehalt aller Verbindungen wurde durch Verbrennungsanalysen bestimmt. Die gefundenen und berechneten Werte stimmen mit der erforderlichen Genauigkeit überein. In Tabelle 2 sind die Mittelwerte von je zwei Analysen angegeben.

NMR-Spektren. In den ¹⁹ F-Spektren der Arsine $CF_3As(NR_2)_2$ liefert die CF_3 -Gruppe ein Singulett zwischen 54 und 57 ppm. Ein Vergleich mit CF_3AsJ_2 zeigt, dass die Substitution J gegen NR_2 die Lage des CF_3 -Signals nur wenig beeinflusst. Bei hoher Auflösung (0.5 ppm = 25 cm) wird eine Multiplettaufspaltung des Fluorsignals als Folge der ⁵ J(HF)-Kopplung beobachtet. Die Multiplett-Linien geringerer Intensität gehen im Rauschen unter.

TABELLE 1

SIEDEPUNKTE DER CF3E(NR2)2-VERBINDUNGEN

Phosphin bzw. Arsin	Sdp. (° C/mmHg)			
CF ₃ P[N(CH ₃) ₂] ₂	72/75			
CF3P[N(CH2CH3)2]2	93/19	· .		
$CF_3P[N(CH_2CH_2CH_3)_2]_2$	79/1			
CF ₃ P[N(CH ₂ CH ₂ CH ₂ CH ₃) ₂] ₂	113/1			
$CF_3P\begin{bmatrix} CH_2-CH_2\\ N\\ CH_2-CH_2 \end{bmatrix}_2$	64/1			
$CF_3 P \begin{bmatrix} CH_2 - CH_2 \\ CH_2 - CH_2 \end{bmatrix}_2$	81/1			
$CF_3As[N(CH_3)_2]_2$	48/20			
$CF_3As[N(CH_2CH_3)_2]_2$	92/20			
CF ₃ As[N(CH ₂ CH ₂ CH ₃) ₂] ₂	75/1			
CF ₃ A ₅ [N(CH ₂ CH ₂ CH ₂ CH ₃) ₂] ₂	122/1			
$CF_3As\begin{bmatrix} CH_2-CH_2\\ \\ \\ CH_2-CH_2 \end{bmatrix}_2$	60/0.5			
$CF_{3}As \begin{bmatrix} CH_{2}-CH_{2} \\ CH_{2}-CH_{2} \end{bmatrix}_{2}$	80/3			
$CF_{3}As \begin{bmatrix} CH_2 - CH_2 \\ O \\ CH_2 - CH_2 \end{bmatrix}_2$	90/0.5	<u>.</u>		

Bei den Phosphinen ist das Signal der CF₃-Gruppe durch die Kopplung mit dem P-Atom in ein Dublett gespalten. Die Kopplungskonstante J(PF) liegt mit etwa 90 Hz im erwarteten Bereich [2-5, 22-26]. Jede Dublett-Linie ist durch die Kopplung mit der α -CH_n-Gruppe des Aminrestes in ein breites, schlecht-

(Fortsetzung s. S. 354)

TABELLE 2

Verbindung	Gehalt (gef.)			Gehalt (ber.)		
	С	н	N	С	н	N
C9H20F3N2P	44.0	8.1	11.3	44.3	8.2	11.5
C13H28F3N2P	51.8	9.3	9.1	52.0	9.3	9.2
C17H36F3N2P	57.5	10.1	7.8	57.2	9.8	7.7
C ₉ H ₁₆ F ₃ N ₂ P	44.8	6.6	11.5	45.0	6.7	11.7
C11H20F3N2P	48.8	7.5	10.3	49.0	7.4	10.4
C5H12AsF3N2	25.7	5.2	11.8	25.8	5.2	12.1
CoH20AsF3N2	37.2	6.9	9.4	37.5	6,9	9.7
CoHicAsFaN202	34.1	5.0	8.5	34.2	5.1	8.9
C11H20AsF3N2	41.9	6.3	8.9	42.3	6.4	9.0
CoH16AsF3N2	38.0	5.5	9.5	38.1	5.6	9.9
CiaH28AsFaN2	45.3	7.9	8.0	45.4	8.1	8.1
C17H36AsF3N2	50.9	8.8	6.9	51.0	9.0	7.0

(CF3) 62.3 Dublett aus Multipletts J(FCP) 90.2 Hz IR: 2960 ss, 2940 ss, 2870 ss, 2700 (sh), 1470 s, 1460 (sh), 1460 (sh), 1380 s, 1300 w, 1270 1105 ss, 1085 ss, 1055 (sh), 1030 s, 990 m, 925 s, 905 m, 870 w, 750 (sh), 725 m, 670 w, 530 m MME: 5(∞) 3.2.5 Stemle. Λ = 4 Hz
 WCF₃) 62.3 Dublett aus Multipletts J(FCP) 90.2 Hz J(FCP) 90.2 Hz IR: 2960 ss, 2940 ss, 2870 ss, 2700 (sh), 1470 s, 1460 (sh), 1460 (sh), 1380 s, 1300 w, 1270 in 1105 ss, 1086 ss, 1055 (sh), 1030 s, 990 m, 925 s, 905 m, 870 w, 750 (sh), 725 m, 670 w, 530 m RMR: 5(w) 3.2, 5 Signale, Δ = 4 Hz MMR: 5(w) 1.7.5 Signale, Δ = 4 Hz

NMR: $5(\alpha)$ 3.1, 3 Signale, $\Delta = 4$ Hz $5(\beta)$ 1.5, breites Singulett $5(\gamma)$ 1.5, breites Singulett $5(\gamma)$ 1.5, breites Singulett $\delta(\gamma)$ 1.5, breites Singulett $\phi(CF_3)$ 62.7, Dublett aus Multipletts J(FCP) 87.9 Hz IR: 3010 w, 2940 gs, 2860 s, 2840 (sh), 2700 w, 1640 w, 1470 (sh), 1460 m, 1440 (sh), 1380 s, 1360 (ah), 1330 m, J(FCP) 87.9 Hz IR: 3010 w, 2940 gs, 2860 s, 2840 (sh), 2700 w, 1640 w, 1470 (sh), 1460 m, 1450 m, 1440 (sh), 1380 s, 1360 (ah), 1330 m, J(FCP) 87.9 Hz IR: 3010 w, 2940 gs, 2860 s, 2840 (sh), 2700 w, 1640 w, 1470 (sh), 1460 m, 1440 (sh), 1380 s, 1360 (ah), 1330 m, J(FCAsNCH) 0.7 Hz J(FCAsNCH) 0.7 Hz J(FCASN	NMR: 5 (a) 2.0 Qu _h th ₆ tt J(HCCH) 7 Hz 5 (g) 1.1 Triplett J(HCCH) 7 Hz v(CF ₃) 57.9 Multh _f let iR: 2980 s, 2940 n, <u>8</u> 880 m, 1470 m, 1460 m, 1380 s, 1375 (sh), 1350 (sh), 1295 m, 1180 s, 1160 s, 1055 (sh), 1010 s, 920 (sh), 890 m, 870 (sh), 790 m, 780 m, 530 w	δ(α) 3.0 Triplett J(HCCH) 8 Hz δ(β) 1.5 Sextett J(HCCH) 7 Hz δ(γ) 0.8 Triplett J(HCC) 7 Hz y(CF3) 57.2 Multhje ⁴ HR: 3050 (sh), 2860 s ₅ , 2940 ss, 2880 s, 2720 (sh), 1540 m, 1470 (sh), 1450 (sh), 1440 w, 1380 m, 1255 w, 1160 (sh), 1145 ss, 4\[0.9 ss, 1035 m, 1020 (sh), 985 (sh), 825 w, 885 (sh), 870 w, 730 s, 630 (sh), 580 w	12 NMR: δ(w) 3.0 Tripleµt J(HCCH) 7 Hz 5(β) 1.4 breites Muptiplett 6(β) 1.4 breites Muptiplett 5(γ) 1.4, breites Muptiplett 6(β) 0.9, 3 Signale, Å 5 Hz φ(CF3) 57.5 Multiplett 1310 w. 1800 w. 11 6 is (sh), 1145 ss, 1095 ss, 1050 (sh), 1650 w, 1480 s, 1470 (sh), 1390 m, 1340 (sh), 1340 (sh), 1340 (sh), 1310 w, 1300 w, 136 is (sh), 1145 ss, 1095 ss, 1050 (sh), 1020 m, 920 m, 900 (sh), 855 m, 730 m, 525 m	NMR: 6(x) 3.1. 3 Şıgrale, $\Delta = 6$ Hz 6(g) 1.7. 4 Signale, $\Delta = 6$ Hz v(CF3) 57.5 Multi,joelt 18: 2970 s, 2870 s, 1630 w, 1490 (sh), 1460 m, 1450 w, 1350 m, 1290 w, 1245 w, 1150 ss, 1090 ss, 1045 (sh), 1025 (sh), 980 m, 910 (sh), 750 m, 525 w 980 m, 910 (sh), 750 m, 525 w (fortgesetzt)
$CF_{3}P\left[N CH_{2}-CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} N CH_{2} C$	CF3As[N(CH2CH ₃)2]2 α β	CF ₃ As[N(CH ₂ CH ₂ CH ₃)2]2 α β γ	CF ₃ As[N(CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ $\alpha \beta \gamma \delta$	$ \begin{array}{c} $

$ \begin{array}{c} \text{CH}_{1} \\ \text{CH}_{2} \\ \text{MRI: } & \text{full solutions singularit} \\ & \text{Sign 1.16 brates singularit} \\ & \text{Sign 1.16 brates singularit} \\ & \text{Sign 1.16 brates singularit} \\ & \text{Sign 2.16 brates singularit} \\ & \text{Sign 2.16 brates singularit} \\ & Sign 2.66 m, B10 (eb), B66 w, B30 w, 730 w, 730 w, 1236 w, 1256 w, 1366 w, 1346 a, 1006 s, 1008 m, 1000 m, 1310 w, 1275 w, 1266 w, 1346 a, 1006 s, 1008 m, 1000 m, 1310 w, 1275 w, 1256 w, 1346 a, 1006 s, 1008 m, 1000 m, 1310 w, 1275 w, 1266 w, 1340 w, 1340 w, 1340 w, 1326 m, 1260 m, 1260 m, 1260 m, 1260 m, 1260 m, 1260 w, 1260 m, 1260 w, 1260 m, 1260 w, 1260 w, 1260 w, 1260 w, 1260 w, 1260 m, 1260 w, 1000 w$	356	
$ \frac{CH_{1}}{DH_{2}} \frac{M}{DH_{2}} = \frac{CH_{1}}{S(0) 160 \text{ brackes Singularit}} \\ \frac{CH_{2}}{DH_{2}} = \frac{S(0)}{S(0) 160 \text{ brackes Singularit}} \\ \frac{S(0)}{S(0) 160 \text{ brackes Singularit} \\ \frac{S(0)}{S(0) 160 \text{ brackes Singularit} \\ \frac{S(0)}{S(0) 160 \text{ brackes Singularit}} \\ \frac{S(0)}{S(0) 160 \text{ brackes Singularit} \\ \frac{S(0)}{S(0) 160 $		
rtserzung CCH ₃ (MMI: 6(c) 8.0 breftes Singulett CH ₃ (MMI: 6(c) 8.0 breftes Singulett CH ₃ (MMI: 6(c) 8.0 breftes Singulett CH ₃ (M) 1.5 breftes Singulet CH ₃ (M) 1.5 breftes Singulet (M) 1.6 (D) 3.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.6 (g, Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.6 (g, D) 4.7 Singulet, A = 7 Hz (M) 3.7 Singule	8 , 1035 1 , 1	
ritestrang) CH4, NMR: $5(\alpha)$ 6(0 breftes Singulett CH4, NMR: $5(\alpha)$ 6(0 breftes Singulett CH4, NMR: $5(\alpha)$ 1.0 breftes Singulet $CH4, NMR: 5(\alpha)$ 56. Multiplett R: 2600, 2650, m, 910 (eds), 856, w, 330 w, 730 w, 730 w, 1310 w, 1275 w, 1255 w, 114 R: 2900, 2650, m, 910 (eds), 856, w, 330 w, 730 w, 2720 w, 2900 w, 1346 m, 1346 m, 1360 e, 1360 $CH5, NMR: 5(\alpha)$ 3.6, 3 Signale, $\Delta = 7$ Hz NMR: $5(\alpha)$ 3.6, 3 Signale, $\Delta = 7$ Hz NMR: $5(\alpha)$ 3.6, 3 Signale, $\Delta = 7$ Hz CH5, 100, 100, 100, 100, 100, 100, 100, 10	5 3, 1095 5 9, 1095 5 50 w, 5	
ritestzung -CH ₂ MMR: $\delta(x)$ 6(x) 6(x) brettes Singulett -CH ₂ MMR: $\delta(y)$ 1.5 brettes Singulett CH ₂ $\delta(y)$ 1.5 brettes Singulet CH ₂ $\delta(y)$ 1.5 brettes Singulet $\beta(y)$ 1.5 brettes Singule A = 7 Hz $\beta(y)$ 3.0, 5 Signale, A = 8 Hz β	5 w, 114 8, 860 m,	
treatrung) -GH ₂ $\int_{G(P)}^{G(P)} GH_2$ NMR: 5(c) 8(d) breaters Singulett G(P) 1.6 breaters Singulett G(P) 1.5 breaters Singulett g(P) 1.5 breaters Singulett g(P) 1.5 breaters Singulett g(P) 1.5 breaters Singulett B $G(P)$ 1.6 breaters Singulett G(P) 1.6 breaters Singulett B $G(P)$ 1.6 breaters Singulett B B $D(P)$ 1.6 breaters Singulett B $D(P)$ B $G(P)$ B B $D(P)$ B $D(P)$ B $D(P)$ B $D(P)$	75 w, 125 6 m, 145	
Itsetzung) $-GH_2$ GH_2 GH_2 G(1) 1.5 breites Singulett 5(9) 1.5 breites Singulett B(1) 1.5 breites Singulett B(1) 1.5 breites Singulett B(1) 1.5 breites Singulett B(1) 1.5 breites Singulett B(2) 3.6 Sigmale, $A = 7$ Hz B(2) 3.6 Sigmale, $A = 8$ Hz B(2) 3.7 Sigmale, $A = 8$ Hz B(2) 3.7 Sigmale, $A = 8$ Hz B(2) 3.6 Sigmale, $A = 8$ Hz B(2) 3.6 Sig	310 w, 12 ss, 1395 0 (sh), 84	
rtfeetzung) CH ₂ CH_2 MMR: $\delta(\alpha)$ 5.0 brettes Singulett CH ₂ CH_2 $\delta(\beta)$ 1.5 brettes Singulett CH ₂ γ CH_2 $\delta(\beta)$ 1.5 brettes Singulett CH_2 γ (3) 1.5 brettes Singulett CH_2 $\delta(\beta)$ 1.5 brettes Singulett B $\delta(\beta)$ 1.6 brettes Singulett B $\delta(\beta)$ 1.6 brettes Singulett CH_2 $\delta(\beta)$ 8.6. 3 Signale, $\Delta = 7$ Hz $NMR: \delta(\alpha)$ 8.6. 3 Signale, $\Delta = 7$ Hz $\delta(\beta)$ 8.0.6 Signale, $\Delta = 8$ Hz CH_2 $\delta(\beta)$ 8.0.6 Signale, $\Delta = 8$ Hz CH_2 $\delta(\beta)$ 8.0.6 Signale, $\Delta = 8$ Hz $\sigma(CP_2)$ 54.7 Multiplett RI: 2270 es, 2220 (eh), 2900 e, 2860 as, 2760 w, 2720 w, 940 ss, 92 1320 w, 1295 m, 1260 s, 1160 ss, 1020 w, 940 ss, 92	280 m, 18 0 w, 1460 5 (ab), 91	
rtsetzung) CH ₂ CH_2 $S(\alpha)$ B.0 breftes Singulett CH ₂ γ CH_2 $S(\gamma)$ 1.5 breftes Singulett CH ₂ γ H_2 $S(\gamma)$ 1.5 breftes Singulett CH_2 γ H_2 $S(\gamma)$ 1.5 breftes Singulett R: 2940 s. 2850 m. 2810 m. 1470 (ab), 1450 m. 14 $R: 2940 s. 2850 m. 2810 m. 1470 (ab), 1450 m. 71CH_2 S(\gamma) 3.0, 5 Signale, \Delta = 8 HzCH_2 S(\beta) 3.0, 5 Signale, \Delta = 8 HzCH_2 S(\beta) 3.0, 5 Signale, \Delta = 8 HzR: 2970 s. 2920 (ab), 2900 s. 2860 s. 2760 w. 275 R: 2970 s. 2920 (ab), 2910 s. 2110 s., 1020 w. 7$	40 (ah), 1 30 w 50 w, 296	
rtsetzung) CH ₂ NMR: $\delta(x)$ 6,0 breites Singulett CH ₂ γ CH ₂ $\delta(\beta)$ 1.5 breites Singulett CH ₂ γ CH ₂ $\delta(\beta)$ 1.5 breites Singulett CH ₂ γ NMR: $\delta(x)$ 8,6,3 Multiplett R: 2940 s, 2860 m, 2810 m, 1470 (ah), 16 R: 2940 s, 2860 m, 2810 m, 1470 (ab), 16 R: 2940 s, 280 m, 910 (ah), 2900 s, 2860 ss, 27 $\beta(\beta)$ 8,0,6 Signale, $\Delta = 7$ Hz $\delta(\beta)$ 8,0,0 s, 2920 (ab), 2900 s, 2860 ss, 27 β 1320 w, 1295 m, 1260 s, 1150 ss, 1110 ss,	14 (50 m, 14 830 w, 7 60 w, 272	
rtsetzung) CH ₂ NMR: $5(\alpha)$ 8:0 breites Singulett CH ₂ γ CH ₂ $5(\beta)$ 1.5 breites Singulett $6(\beta)$ 1.5 breites Singulett $6(\beta)$ 1.5 breites Singulett β NMR: $5(\alpha)$ 8:6.3 Multiplett R: 2940 s, 2850 m, 2810 m, 14' 1025 m, 930 m, 910 (sh), 895 (si NMR: $5(\alpha)$ 8.6.3 Sigmale, $\Delta = 7$ $6(\beta)$ 8.0, 5 Sigmale, $\Delta = 7$ $6(\beta)$ 8.0, 5 Sigmale, $\Delta = 8$ Hz γ (CF ₃) 54.7 Multiplett IR: 2970 ss, 2920 (sh), 2900 s, 2 β 1150 ss 2000 s, 1150 ss	10 (ah), 1 1), 865 w, Hz 860 ss, 2'	· · ·
rtsetzung) CH ₂ γ CH ₂ NMR: $\delta(\alpha)$ β_i0 breates singule CH ₂ γ CH ₂ $\delta(\beta)$ 1.5 breates singule $\delta(\beta)$ 1.5 breates singule $\delta(\beta)$ 1.5 breates singule $\delta(\beta)$ 1.6 breates singule β 1025 m, 930 m, 910 (a NMR: $\delta(\alpha)$ 3.0, 5 Signale, $\Delta = -$ $CH2 \delta(\beta) 3.0, 5 Signale, \Delta = -\delta(\beta) 3.0, 5 Signale, \Delta = -\delta(\beta) 1.320 w, 1295 m, 1260$	singulett tt tt tt h), 895 (s h), 895 (s h), 8 Hz 8 Hz 2800 s, 2 s, 1150 s	
rtsetzung) CH ₂ γ CH ₂ NMR: 5(a) 6; 3 6; 3 6; 3 6; 3 6; 3 6; 3 6; 3 6;	0 breftes (s Singule s Singule Multiplett Xdutiplett 8, 3 Signe male, Δ = Multiplett 1920 (sh), m, 1260	
$\begin{array}{c} CH_2 \\ CH$	2: δ(α) g. 1.5 breft 1.5 breft 1.5 breft 3.0 6.3 1 5 m, 930 8: δ(α) 3. 8: δ(α) 3. 8: δ(α) 3. 8: 5 51 7: 3) 5.4.7 1 2: 970 es, 2 2: 970 es, 2 2	
CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	H2 H2 Y T2 Y T2 Y T2 Y T2 Y	
CH2 CH2 CH2	3 (Fortss CH2-CI CH2-CI CH2-CI CH2-CI CH2-CI	
	ABELLE F3As N	

aufgelöstes Multiplett aufgespalten. Nur beim Methylderivat ist die Aufspaltung deutlich zu erkennen, aus Intenstitätsgründen sind aber auch hier nicht alle Multiplettkomponenten deutlich zu sehen.

Die ¹ H-NMR-Spektren der CF₃ As(NR₂)₂ -Verbindungen sind gegenüber den Spektren der reinen Amine kaum verändert. Die Multiplettaufspaltung der α -CH_n-Protonen ist wegen der Überlagerung der verschiedenen CH-Resonanzen nur schwer zu identifizieren. In den ¹ H-NMR-Spektren der Phosphine sind die Signale der α -CH_n-Gruppen durch Kopplung mit dem Phosphor in Dubletts gespalten. (³ J(PH) \cong 8 Hz).

Bei den Verbindungen mit niederen Aminresten wie CF₃ P{N(CH₃)₂]₂ ist eine Aufspaltung jeder Dublettlinie in ein Quartett durch die CF₃-Gruppe zu beobachten. Diese Kopplung ist bei den höheren Signalgruppen nicht mehr deutlich zu erkennen. Alle NMR-Daten sind in Tabelle 3 zusammengefasst. Die Zuordnung zu bestimmten, funktionellen Gruppen ist durch Integration der Signale und durch Vergleich mit den Spektren der Ausgangsverbindungen möglich. Bei echten Kopplungen ist die Konstante J(XY) angegeben, wobei X und Y die gekoppelten Atome bezeichnet. Bei Liniengruppen ist der Abstand der Signale als Δ angegeben. Alle Angaben beziehen sich auf TMS bzw. CCl₃ F als inneren Standart.

IR-Spektren. Die IR-Spektren haben für die Charakterisierung der Substanzen und den Nachweis der Molekülstruktur geringere Bedeutung als die NMR-Spektren. Allen Spektren gemeinsam sind die CH-Valenz- und Deformationsschwingungen bei ~ 2900 bzw. 1500 cm⁻¹ sowie die CF-Schwingungen um ~ 1100 cm⁻¹. Diese Banden sind gegenüber dem Spektrum der freien Amine bzw. der Dijodide CF₃ EJ₂ in Lage und Intensität nur wenig verändert. Im Gegensatz zu den Methylverbindungen CH₃ As(NR₂)₂, die bei 580 cm⁻¹ die intensive Bande der As-N-Valenzschwingung zeigen, fehlt im Spektrum der CF₃ As(NR₂)₂. Moleküle eine typische As-N-Bande. Die IR-Daten sind in Tabelle 3 angegeben.

Umsetzungen. Die reaktivste Bindung in Aminophosphinen und -arsinen ist die E-N-Bindung, die bevorzugt Spaltungen mit Protonensäuren eingeht. Bei den Alkylverbindungen nehmen die Umsetzungen den durch Gl. 4 beschriebenen Verlauf:

$$E - N + HX \rightarrow E - X + H - N$$
(4)

Die Gruppe X wird an das Element E übertragen und das Amin wird frei, bzw. bei starken Säuren zum Ammoniumsaltz protoniert [27–38]. Bei Perfluoralkylverbindungen wie CF₃ E(NR₂)₂ ist eine analoge Reaktion zu erwarten. Allerdings bewirkt die hohe Elektronegativität der CF₃-Gruppe eine E_{nd} -N_{2p}- π -Rückbindung, die die Basizität des freien Elektronenpaars am Stickstoff stark absenkt und das Atom E für einen nukleophilen Angriff desaktiviert [5, 20, 39–49]. Die Stärke dieser E-N- π -Rückbindung wird durch die Akzeptorstärke der *nd*-Orbitale des Elementes E bestimmt. Entsprechend der energetischen Lage und Überlappungsmöglichkeit ist die P_{3d}-N_{2p}- π -Bindung stärker als die As_{4d}-N_{2p}- π -Bindung. Bestätigt wird diese Überlegung z.B. durch die Aminolyse des (CF₃)₂ As-NCH₃-P(CF₃)₂, die ausschliesslich zu (CF₃)₂ As-NH₂ und (CF₃)₂- 358

Diese und zahlreiche andere Spaltungsreaktionen der As-N-Bindung machen den Mechanismus der Gl. 5 wahrscheinlich. Der nukleophile Angriff von X auf

$E \stackrel{\pi}{\Rightarrow} NR_2 = -NR_2$	E+NR.	E NR-		
$+ \Rightarrow \uparrow$	⇒ *	⇒ + +		(5)
нх х–н	х н	х́н		

E hebt die E-N- π -Rückbindung auf; möglicherweise unterstützt bei starken Säuren HX eine gleichzeitige Protonierung des Aminstickstoffs diesen Prozess. Die nach Gl. 5 zu erwartende Produktverteilung bestätigt diesen Mechanismus bei allen Umsetzungen. Gründsätzlich sollte eine Umsetzung nach Gl. 5 eintreten, wenn die Energie der E_{nd} - X_{mp} - π -Bindung grösser ist als die Energie der E_{nd} - N_{2p} - π -Rückbindung. Danach müsste die N-P-Bindung schwerer spaltbar sein als die As-N-Bindung, bei beiden aber die Spaltungstendenz mit der Acidität von HX bzw. der Nukleophilie von X zunehmen. Die Alkylverbindungen CH₃As(NR₂)₂ sollten wegen des Fehlens der As-N-Rückbindung reaktiver sein als die Perfluoralkylverbindungen.

Die unter diesen Aspekten durchgeführten Umsetzungen der $CF_3E_{N(CH_3)_2}_2$ -Verbindungen mit Halogenwasserstoffen, Alkoholen, Thiolen und Aminen ergaben:

Alle Reaktionen können durch die Brutto-Reaktionsgleichung 6 zusammengefasst werden. Bei X = Cl wird das Dimethylamin zum Ammoniumchlorid protoniert.

$$CF_3 E[N(CH_3)_2]_2 + 2HX \rightarrow CF_3 EX_2 + 2HN(CH_3)_2$$
 (6)

 $X = Cl, OCH_3, OC_6H_5, SC_6H_5, HNC_4H_8NCH_3, HN(C_3H_7)_2$

Ein Vergleich der Phosphine und Arsine ergab eine grössere Reaktivität der Arsine, die sich in einer allgemein etwas höheren Ausbeute bei Reaktion 6 ausdrückt. Ein Vergleich der Reaktivität der HX bestätigt die Erwartungen: HCl und Thiophenol reagieren spontan beim Auftauen der Reaktanden; bei den andern Umsetzungen müssen Reaktionstemperaturen um 100°C eingestellt werden, die zu einer teilweisen Zersetzung führen. Bei CH_3 OH ist die Reaktivität am geringsten; die Amine spalten gut, jedoch treten hier die meisten Zersetzungsprodukte auf. Wegen der geringen Substanzmengen werden die Produkte nicht isoliert sondern im Reaktionsgemisch spektroskopisch nachgewiesen.

Ein Vergleich der CF₃ As $(NR_2)_2$ -Verbindungen mit den analogen Methylarsinen zeigt, dass die As-N- π -Bindung das Molekül für Spaltungsreaktionen mit HX desaktiviert. Während bei den CH₃-Derivaten die Spaltungen schon bei Raumtemperatur eingeleitet werden [1], müssen bei den CF₃-Verbindungen Reaktionstemperaturen von 100°C eingestellt werden.

Experimenteller Teil

Ausgangsverbindungen. $CF_3 AsJ_2$ und $CF_3 PJ_2$ wurden durch Umsetzung von elementarem Arsen bzw. Phosphor mit $CF_3 J$ bei 220°C gewonnen [49, 50]. Bei allen andern Ausgangsverbindungen wurden käufliche Präparate eingesetzt. Alle verwendeten Lösungsmittel und die Amine wurden sorgfältig getrocknet.

Synthese. Die $CF_3 EJ_2$ -Komponente wurde unter N_2 -Schutzgas in eine Ampulle eingewogen und an der Stockapparatur Äther als Lösungsmittel und das jeweilige Amin in stöchiometrischer Menge einkondensiert. Nach Abschmelzen der Ampulle wurden die Reaktanden aufgetaut und nach beendeter Umsetzung die ätherlöslichen Anteile über eine Fritte in einen Seitenarm der Ampulle gespült. Durch Kühlen des Ampullenkörpers wird der Äther zurückkondensiert und das Ammoniumsalz mit frischem Äther nachgewaschen.

Der Äther wurde bei Normaldruck unter Stickstoff abdestilliert, die Produkte sodann durch Vakuumdestillation isoliert.

Umsetzungen. Die Reaktanden wurden in stöchiometrischem Verhältnis in einer Ampulle eingeschmolzen, 24 h auf 100°C gehalten und anschliessend das ¹⁹ F- und ¹ H-NMR-Spektrum augenommen.

Spektren. Die IR-Spektren wurden als dünne Filme zwischen KBr-Platten auf einem Gerät 337 der Firma Perkin-Elmer registriert. Die NMR-Spektren wurden auf einem Gerät T60 der Firma Varian gemessen. Die Elementaranalysen wurden auf einem automatischen Gerät Elemental Analyzer 240 der Firma Perkin-Elmer aufgenommen.

Dank

Wir danken Herrn Professor Dr. J. Grobe für Diskussionen und die Unterstützung der Arbeit durch Mittel des Instituts.

Der Deutschen Forschungsgemeinschaft danken wir für die finanzielle Unterstützung der Arbeit.

Literatur

- 1 F. Kober, Z. Anorg. Allg. Chem., 397 (1973) 97.
- 2 H.G. Ang, G. Manoussakis und Y.O. El-Nigumi, J. Inorg. Nucl. Chem., 30 (1968) 1715.
- 3 Y.O. El-Nigumi und H.J. Emeléus, J. Inorg. Nucl. Chem., 32 (1970) 3211.
- 4 H.A. Cowley und D.S. Diersdorf, J. Amer. Chem. Soc., 91 (1969) 6609.
- 5 J.F. Nixon und R.G. Cavell, J. Amer. Chem. Soc., 1964 (1964) 5983.

- 6 M.P. Grinblat, A.L. Klebanskii und V.N. Prons, Zh. Obshch. Khim., 39 (1969) 172.
 7 A.B. Burg, W.A.D.C. Technical Report 57-126, Teil IV, März 1960.
 8 E. Fluck, J.R. van Wazer und L.C.D. Groenweghe, J. Amer. Chem. Soc., 81 (1959) 6363.
- 9 E. Schwarzmann und J.R. van Wazer, J. Amer. Chem. Soc., 81 (1959) 6366.
- 10 F. Francoise und M.L. Delwaulle, J. Chim. Phys., 46 (1949) 87.
- 11 M.L. Delwaulle und F. Francoise, J. Chim. Phys., 46 (1949) 80.
- 12 J.K. Ruff und G. Paulett, Inorg. Chem., 3 (1964) 998.
- E. Fluck und J.R. van Wazer, Z. Anorg. Allg. Chem., 307 (1961) 113.
 I.R. Parks und J.R. van Wazer, J. Amer. Chem. Soc., 79 (1957) 4890.
- 15 L.C.D. Groenweghe und I.H. Payne, J. Amer. Chem. Soc., 81 (1959) 6357.
- 16 K. Moedritzer und J.R. van Wazer, Inorg. Chem., 3 (1964) 139.
- 17 W.R. Cullen, Can. J. Chem., 41 (1963) 319.
- 18 F. Koher, Z. Anorg. Allg. Chem., 398 (1973) 115.
- 19 F. Kober und W.J. Rühl, J. Fluorine Chem., (1974) 4.
- 20 G.S. Harris, J. Chem. Soc., (1958) 512.
- 21 W.R. Cullen und H.J. Emeléus, J. Chem. Soc., (1959) 372.
- 22 N.N. Greenwood und B.H. Robinson, J. Chem. Soc., A, (1968) 226.
- 23 N.N. Greenwood, B.H. Robinson und B.P. Strangham, J. Chem. Soc. A, (1968) 230.
- 24 A.H. Cowley, M. Dwar, W.R. Jackson und W.B. Jennings, J. Amer. Chem. Soc., 92 (1970) 1085.
- 25 K.J. Packer, J. Chem. Soc., (1963) 960.
- 26 A.H. Cowley, J. Amer. Chem. Soc., 89 (1967) 5990.
- 27 H.G. Schick und G. Schrader, C.A., 55 (1961) 25744.
- 28 H.J. Vetter und H. Nöth, Z. Naturforsch., 19b (1964) 166.
- 29 H.J. Vetter und H. Nöth, Angew. Chem., 74 (1962) 943.
- 30 H.J. Vetter, H. Nöth und U. Hayduck, Z. Anorg. Allg. Chem., 331 (1964) 35.

31 K. Irgolic, R.A. Zingaro und R.M. Smith, J. Organometal, Chem., 6 (1966) 17.

- 32 C.F. McBrearthy, K. Irgolic und R.A. Zingaro, J. Organometal. Chem., 12 (1968) 377.
- 33 R.H. Anderson und R.H. Cragg, Chem. Commun., (1970) 425.
 34 L.S. Sagan, R.A. Zingaro und K. Irgolic, J. Organometal. Chem., 39 (1972) 301.
 - 35 K, Moedritzer, Chem. Ber., 92 (1959) 2637.

360

- 36 K. Sommer und M. Becke-Goehring, Z. Anorg. Allg. Chem., 355 (1967) 182.
- 37 F. Kober und W.J. Rühl, Z. Anorg. Allg. Chem., im Druck, 38 F. Kober und W.J. Rühl, Z. Anorg. Allg. Chem., im Druck.
- 39 R.G. Cavell und R.C. Dobbie, J. Chem. Soc., (1968) 1406.
- 40 A.B. Burg und P.J. Slota, J. Amer. Chem. Soc., 80 (1958) 1107.
- 41 H.J. Emeléus und J.D. Smith, J. Chem. Soc., (1959) 375.
- 42 A.B. Burg und J. Henners, J. Amer. Chem. Soc., 87 (1965) 3092.
- 43 A.B. Burg und G. Brendel, J. Amer. Chem. Soc., 80 (1958) 3198. 44 W. Mahler und A.B. Burg, J. Amer. Chem. Soc., 79 (1957) 251.
- 45 J.E. Griffiths und A.B. Burg, J. Amer. Chem. Soc., 82 (1960) 1507.
- 46 A.B. Burg und K. Gosling, J. Amer. Chem. Soc., 87 (1965) 2113.
- 47 L.R. Grant und A.B. Burg, J. Amer. Chem. Soc., 84 (1962) 1834.
- 48 J. Singh und A.B. Burg, J. Amer. Chem. Soc., 88 (1966) 718.
- 49 E.G. Walaschewski, Chem. Ber., 86 (1959) 272.
- 50 F.W. Bennett, H.J. Emeleus und R.N. Haszeldine, J. Chem. Soc., (1953) 1565.